

Ethereum Classic Technical Reference (BETA)

[image: etc_logo.png]
(The ETC Classic Technical Reference is still a work in progress. Feel free to
send suggestions, feedback and corrections to me, Chris Seberino, at
cs@etcplanet.org or through the Github pull request mechanism.)

	Introduction

	World Computer (Virtual Machine)
	Accounts
	Addresses

	Ether & Gas

	Smart Contracts
	Smart Contract Languages

	Multisig Smart Contracts

	Clients
	Web 3

	World Database (Blockchain)
	Transactions

	Blocks
	Computation

	Consensus

	Context

	Accounts

	Logs
	Logging Requests
	Indexed Values

	Mining
	Proof Of Work Information

	Ethash

	Uncle Blocks

	Mining Pools

	Mining Rewards

	Appendices
	Recursive Length Prefix

	Root Hashes

	Bloom Filters

	Digital Signatures

	How Nodes Find Each Other

	Code Is Law Principle

	A Crypto-Decentralist Manifesto By Bit Novosti

	The Ethereum Classic Declaration Of Independence

	Glossary

Introduction

Ethereum Classic (ETC) is the most exciting technology today. It promises to
upend governments, the financial industry, supply chain management and much
more. The marriage of ETC with the Internet of Things is a game changer. Some
think ETC may replace the World Wide Web!

ETC is composed of the world computer and database. The ETC world computer is
also referred to as the ETC virtual machine. The ETC world database is also
referred to as the ETC blockchain. These two components have several noteworthy
properties:

	censorship resistance

	It is virtually impossible to stop the execution of code or
to deny access to information.

	security

	Security is built in with cryptography.

	pseudonymity

	Users are anonymous except for pseudonyms.

	openness

	All the software is open source, and, all the activity for all time
is available for inspection.

	reliability

	It is always available and virtually impossible to shut down.

	trustlessness

	There is no need to rely on any single person or entity.

All of these properties, except trustlessness, are possible without blockchain
technology. For example, consider a web server securely configured with several
identical backup servers geographically distributed. Suppose these web servers
were only accessible using onion routing [https://en.wikipedia.org/wiki/Onion_routing]. This setup can provide
significant censorship resistance, security, pseudonymity, openness and
reliability. Note however how much effort is required. With ETC, these
properties are present by default!

Because ETC is trustless, no one has special powers. Therefore, it
is possible to implement extremely sensitive applications on ETC such as
financial and identity services.

Final note, everyone effectively runs their applications on the same single
computer, the ETC world computer. However, this virtual computer is actually
implemented by a worldwide network of computers. All the computers in the
network run all applications in parallel. This extreme redundancy is a main
reason the ETC world computer has its amazing properties.

World Computer (Virtual Machine)

The world computer is a single virtual machine implemented by a worldwide
network of computers. Programs on the world computer are referred to as
smart contracts. Because the world computer is
Turing complete [https://en.wikipedia.org/wiki/Turing_completeness],
smart contract can be arbitrarily complex. Users interact with the world
computer through clients using
accounts. In fact, all actions on the world computer are
initiated by transactions sent from users.

	Accounts
	Addresses

	Ether & Gas

	Smart Contracts
	Smart Contract Languages

	Multisig Smart Contracts

	Clients
	Web 3

Accounts

Accounts are associated with users and
smart contracts. All accounts contain the
following five components:

	address

	These are sets of numbers used to identify accounts.

	balance

	All funds are associated with accounts. This is a balance of classic ether,
also know as ether or ETC.

	code (smart contract)

	All smart contracts are associated with accounts. This component is
an empty string for user accounts.

	storage

	All smart contracts have associated memory. This component is an
empty string for user accounts.

	nonce

	Nonces are counters. For user accounts, these equal the number of associated
transactions. For smart contract accounts, these
equal the number of associated smart contracts created.

All components of all accounts together comprise the state of the world
computer.

Addresses

All accounts are identified by addresses which are derived from secret random
numbers unique to each account. These secret random numbers are referred to as
private keys. Private keys must be kept private because they are used to
digitally sign transactions from accounts. These transactions can transfer
funds, create smart contracts, and, execute smart contracts. Strictly speaking,
private key numbers must be between 1 and

115792089237316195423570985008687907852837564279074904382605163141518161494336

inclusive. This requirement is necessary for their use in ETC digital
signatures. Some may be concerned that two users might unintentionally select
the same private key. The odds of that happening are vanishingly small. In fact,
the number of possible private keys is approximately equal to the number of
atoms in the entire universe!

All private keys are associated 64 byte numbers derived from them which are
referred to as public keys. The calculation of public keys involves an odd
type of arithmetic with respect to pairs of numbers. Here is a Python script
that calculates public keys from private keys:

#!/usr/bin/env python3

"""
Calculates ETC public keys from ETC private keys.

Usage: etc_pub_key <private key>
"""

import random
import sys

A = 0
N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
P = 0xfffefffffc2f
GX = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
GY = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
HEXADECIMAL = 16
NUM_FORMAT = "{{:0{}x}}".format(len(hex(P)[2:]))

def inverse(number):
 """
 Inverts a number.
 """

 inverse = 1
 power = number
 for e in bin(P - 2)[2:][::-1]:
 if int(e):
 inverse = (inverse * power) % P
 power = (power ** 2) % P

 return inverse

def add(pair_1, pair_2):
 """
 Adds two pairs.
 """

 if pair_1 == "identity":
 sum_ = pair_2
 elif pair_2 == "identity":
 sum_ = pair_1
 else:
 if pair_1 == pair_2:
 numer = 3 * pair_1[0] ** 2 + A
 lambda_ = (numer * inverse(2 * pair_1[1])) % P
 else:
 numer = pair_2[1] - pair_1[1]
 denom = pair_2[0] - pair_1[0]
 lambda_ = (numer * inverse(denom)) % P
 x = (lambda_ ** 2 - pair_1[0] - pair_2[0]) % P
 y = (lambda_ * (pair_1[0] - x) - pair_1[1]) % P
 sum_ = (x, y)

 return sum_

def multiply(number, pair):
 """
 Multiplies a pair by a number.
 """

 product = "identity"
 power = pair[:]
 for e in bin(number)[2:][::-1]:
 if int(e):
 product = add(power, product)
 power = add(power, power)

 return product

def convert(pair):
 """
 Converts pairs to numbers by concatenating the elements.
 """

 return int("".join([NUM_FORMAT.format(e) for e in pair]), HEXADECIMAL)

 print(convert(multiply(int(sys.argv[1]), (GX, GY))))

The reason for this convoluted process is so that private keys cannot be derived
from public keys. This allows public keys to be safely shared with anyone. If
you want to learn more, investigate elliptic curve cryptography. The reason for
this name is that historically it followed from calculations of the arc lengths
of ellipses. Together, public and private keys are often referred to as
wallets.

Addresses are formed from the first 20 bytes of the Keccak 256 hashes of public
keys. These are more often used to identify accounts rather than public
keys. Interestingly, public keys cannot be determined solely from addresses.
Here is a Python script that calculates addresses from public keys. It requires
the PySHA3 package. Addresses are typically expressed in hexadecimal notation
and that convention is followed in this script:

#!/usr/bin/env python3

"""
Calculates ETC addresses from ETC public keys.

Usage: etc_address <public key>
"""

import sha3
import binascii
import sys

N_ADDRESS_BYTES = 20
N_PUB_KEY_BYTES = 64

public_key = (int(sys.argv[1])).to_bytes(N_PUB_KEY_BYTES, byteorder = "big")
print(sha3.keccak_256(public_key).hexdigest()[-2 * N_ADDRESS_BYTES:])

Here is a slightly edited session, on a Linux computer, that calculates a public
key and address with regards to a random private key. It uses the aforementioned
scripts saved in files called etc_pub_key and etc_address respectively:

% PRIVATE_KEY="92788259381212812445638172234843282167646237087212249687358593145563035518424"

% PUBLIC_KEY=`etc_pub_key $PRIVATE_KEY`

% ADDRESS=`etc_address $PUBLIC_KEY`

% echo $PRIVATE_KEY
92788259381212812445638172234843282167646237087212249687358593145563035518424

% echo $PUBLIC_KEY
9808854183897174607002157792089896992612613490844656534725423301978228163634425857099752732031947328803605451685330420628756154476771607661633738743568351

% echo $ADDRESS
89b44e4d3c81ede05d0f5de8d1a68f754d73d997

Ether & Gas

To create and utilize smart contracts, user submit transactions. Transactions
must pay for these services in classic ether. Classic ether can be obtained by
purchasing it or by mining. The smallest denomination of classic ether used in
the ETC system is 1 wei. One billion billion (10¹⁸) weis equal a single classic
ether. Due to the mining reward formula, the total supply of classic ether will
never exceed 210.6 million tokens.

The cost of creating and executing all smart contracts is measured in a made up
unit referred to as gas units. Users submit transactions that pay for gas units
in terms of classic ether. Notice that while the price of classic ether
fluctuates, the price of various services in terms of gas units does not. In
transactions, user specify how much classic ether they are willing to pay per
gas unit. For security reasons, the amount of gas that can be purchased and
used by blocks is limited.

Smart Contracts

Smart contracts are autonomous software applications that manage agreements.
Agreements may be trivial or extremely complex. An alternative equivalent term
is software agents. Consider vending machines. They specify and enforce
agreements to release various items for various payments. They do not require
humans to operate. Vending machine are therefore examples of smart contracts.
They notion of smart contracts was conceived by Nick Szabo and predates
blockchain technology:

“A smart contract is a computerized transaction protocol that executes the
terms of a contract. The general objectives of smart contract design are to
satisfy common contractual conditions (such as payment terms, liens,
confidentiality, and even enforcement), minimize exceptions both malicious
and accidental, and minimize the need for trusted intermediaries. Related
economic goals include lowering fraud loss, arbitration and enforcement
costs, and other transaction costs.”

– Nick Szabo, 1994

ETC makes an excellent smart contract platform. ETC programs autonomously
manage countless agreements in a secure, reliable and trustless manner. For
this reason ETC programs are referred to as smart contracts.

ETC smart contracts can read and write to their own storage as well as invoking
other smart contracts. In this way, smart contracts can work together to
provide increasingly sophisticated services.

Some, like Nick Szabo, envision smart contracts streamlining voluntary
contractual agreements and disrupting the legal profession. Clearly software is
less prone to misunderstanding and ambiguity than spoken languages! Others see
a future where complex smart contracts replace entire corporations. Such
programs are referred to as distributed autonomous enterprises (DAEs). For
example, imagine a smart contract implementing a ride sharing service. The
smart contract could bring riders and drivers together in an efficient flexible
manner. Note that ETC smart contracts can not only make existing agreements
more efficient, but, they can also make possible contracts which previously were
not possible due to overhead costs. For example, in addition to assisting
multinational corporations, ETC can help teenagers running a small business and
people providing microservices to third world countries.

Because the ETC world computer is implemented by a network of
computers, ETC smart contracts are also referred to as decentralized
applications, or dapps for short.

Smart Contract Languages

Typically smart contracts are written in high level languages. The
corresponding source code is compiled to the equivalent ETC virtual machine
instructions. The most popular high level smart contract language is Solidity.
There are also other possible choices such as Vyper. Solidity is a Javascript
like language designed to be easily adopted by new developers. Here is the
Solidity source code for a simple program. All it does is maintain a counter
variable. The counter can be incremented by anyone. Only the user account that
created the smart contract can reset the counter value:

pragma solidity ^0.4.18;

/*
This smart contract maintains a counter which anyone can increment but only
the author can set to an arbitrary value.
*/

contract Counter {
 uint counter;
 address author;

 function Counter() public {
 counter = 0;
 author = msg.sender;
 }

 function increment() public {
 counter += 1;
 }

 function set(uint new_value) public {
 if (msg.sender == author) {
 counter = new_value;
 }
 }

 function get_counter() public constant returns (uint) {
 return counter;
 }
}

Here is Solidity source code for a more complex program. This one implements a
new token:

pragma solidity ^0.4.18;

/*
Implements ChrisCoin which adheres to the Ethereum Token Standard.
*/

contract ChrisCoin {
 string name_;
 string symbol_;
 uint decimals_;
 uint total_supply;
 mapping(address => uint) balance;
 mapping(address => mapping(address => uint)) approved;

 event Approve(address indexed managed_add,
 address indexed manager_add,
 uint approv_amt);
 event Transfer(address indexed send_add,
 address indexed receiv_add,
 uint trans_amt);

 function ChrisCoin() public {
 /*
 Sets the named constants and the initial balance(s).
 */

 name_ = "ChrisCoin";
 symbol_ = "CHRC";
 decimals_ = 18;
 total_supply = 21000000 * 10 ** decimals_;
 balance[msg.sender] = total_supply;
 }

 function name() public constant returns (string) {
 /*
 Returns the cryptocurrency name.
 */

 return name_;
 }

 function symbol() public constant returns (string) {
 /*
 Returns the exchange ticker symbol.
 */

 return symbol_;
 }

 function decimals() public constant returns (uint) {
 /*
 Returns the maximum number of subdivision decimal places.
 */

 return decimals_;
 }

 function balanceOf(address account_add) public constant returns (uint) {
 /*
 Returns account balances.
 */

 return balance[account_add];
 }

 function allowance(address managed_add,
 address manager_add)
 public constant returns (uint) {
 /*
 Returns approved amounts.
 */

 return approved[managed_add][manager_add];
 }

 function approve(address manager_add,
 uint approv_amt)
 public constant returns (bool) {
 /*
 Returns approved amounts.
 */

 approved[msg.sender][manager_add] = approv_amt;
 Approve(msg.sender, manager_add, approv_amt);

 return true;
 }

 function valid(address send_add,
 address receiv_add,
 uint trans_amt)
 public constant returns (bool) {
 /*
 Determines the validity of transfers.
 */

 bool valid_trans_amt = trans_amt <= total_supply;
 bool suff_send_bal = balance[send_add] >= trans_amt;
 uint receiv_bal = balance[receiv_add] + trans_amt;
 bool valid_receiv_bal = receiv_bal <= total_supply;

 return valid_trans_amt && suff_send_bal && valid_receiv_bal;
 }

 function update_balance(address send_add,
 address receiv_add,
 uint trans_amt)
 private {
 /*
 Updates balance with regards to tranfers.
 */

 balance[send_add] -= trans_amt;
 balance[receiv_add] += trans_amt;
 }

 function update_approved(address send_add, uint trans_amt) private {
 /*
 Updates approved with regards to tranfers.
 */

 approved[send_add][msg.sender] -= trans_amt;
 }

 function transfer(address receiv_add,
 uint trans_amt)
 public constant returns (bool) {
 /*
 Transfers funds between accounts.
 */

 bool result = false;
 if (valid(msg.sender, receiv_add, trans_amt)) {
 update_balance(msg.sender, receiv_add, trans_amt);
 Transfer(msg.sender, receiv_add, trans_amt);
 result = true;
 }

 return result;
 }

 function transferFrom(address send_add,
 address receiv_add,
 uint trans_amt)
 public constant returns (bool) {
 /*
 Transfers funds between accounts.
 */

 bool result = false;
 bool approv_amt = trans_amt <= approved[send_add][msg.sender];
 if (valid(send_add, receiv_add, trans_amt) && approv_amt) {
 update_balance(send_add, receiv_add, trans_amt);
 update_approved(send_add, trans_amt);
 Transfer(send_add, receiv_add, trans_amt);
 result = true;
 }

 return result;
 }
}

Multisig Smart Contracts

Multisig smart contracts will likely be the dominant smart contract type in the
future. The security and other benefits are that compelling.

Malware, keyboard loggers and “man in the middle attacks” are just some of the
ways passwords can be stolen. Therefore, many use multifactor authentication to
increase security. For example, accessing a website from a laptop may require a
password and approval from a smartphone.

Ethereum Classic (ETC) and other smart contract systems can also benefit from
multifactor authentication. ETC users are associated with accounts. ETC account
authentication involves digital signatures. Therefore, ETC smart contracts
requiring multifactor authentication are referred to as multisig smart
contracts.

One of the most common types of multisig smart contracts requires digital
signatures from any two of three accounts. Here are some applications where this
is useful:

	Single Individuals

	Imagine always requiring a digital signature from a laptop based account and
a smartphone based account. To protect against the loss of either device,
store the information for the third account in a secured paper wallet.

	Online Shopping (Trusted Escrow)

	When purchasing products and services online, imagine buyers placing funds in
multisig smart contracts. Have buyers and sellers each control an associated
account. Allow an arbiter to control the third associated account. Notice
buyers and sellers can together release funds without the arbiter. In the
event of disagreements notice the arbiters can, together with buyers or
sellers, release funds to the desired choices. Because the arbiter does not
control any funds, this is referred to as trusted escrow.

	Small Businesses

	Imagine a small business controlling one associated account. Imagine a
separate inspection service company controlling the second associated
account. All transactions must be approved by the inspection service. To
protect against any issues with the accounts, store the information for
the third associated account in a secured paper wallet.

Here are two more multisig smart contract types and applications:

	Majority Rule

	Imagine all members of a group controlling separate associated
accounts. Imagine requiring digital signatures from any majority of the
accounts. This would implement a majority rule arrangement.

	Unanimity Rule

	Imagine all members of a group controlling separate associated
accounts. Imagine requiring digital signatures from all of the accounts. This
would implement a unanimity rule arrangement.

There are currently no ETC multisig smart contract standards. However, open
source templates are available - such as from the OpenZeppelin project.

There are several common scenarios where multisig smart contracts are useful and
significantly increase security. Therefore, it is likely they will take over ETC
and the world.

Clients

To interact with the ETC world computer requires communicating with a computer
on the ETC network. It is relatively easy to set up a computer to become part
of the network. This requires the installation of an implementation of the ETC
communication protocols. Possible choices include
Geth [https://github.com/ethereumproject/go-ethereum],
Parity [https://github.com/paritytech/parity]
and Mantis [https://github.com/input-output-hk/mantis].
To use ETC, it is not necessary to set up a new computer on the
network. Applications can simply request information from other network
computers. Such applications are referred to as light clients. Whether using
a light client or setting up a full network computer, users can communicate with
the ETC network using Web 3.

Web 3

Web3 refers to a standard set of ETC application programming interfaces using
the Javascript Object Notation Remote Procedue Call (JSON RPC) protocol. Web3
provides a convenient way to interact with ETC nodes and the ETC system. The
name Web3 refers to the most ambitious goal for Ethereum Classic (ETC) which is
to replace the World Wide Web (Web). Blockchain based replacements for the Web
are often referred to as Web 3.0.

The Web was developed by Tim Berners-Lee and first made publicly available in
1991. It is a user friendly general purpose system based on the Internet.
Initially the Web mainly contained simple static content such as primitive
personal home pages. As the Web evolved, greater dynamism and interactivity was
possible such as with social media. This improved Web is often referred to as
Web 2.0. The term was popularized by Tim O’Reilly.

Neither the Internet nor the Web were initially designed to be trustless
systems. Components have been steadily introduced to improve security such as
Transport Layer Security (TLS), certificate authorities, and, Domain Name System
Security Extensions (DNSSEC). Unfortunately, many such improvements are only
partially adopted.

Gavin Wood popularized the term Web 3.0 for blockchain based trustless
alternatives to the Web. Confusingly, Web 3.0 also sometimes refers to the
Semantic Web.

Web 3.0 is a peer to peer replacement for the Web. A peer to peer architecture
is required to build trustless systems. Web 3.0 users are pseudonymous. They
are only identified by their accounts, unlike the Web, where addresses can be
associated with identities. ETC requires access to additional short and long
term storage systems to replace the Web. The InterPlanetary File System (IPFS)
is an example of a compelling peer to peer storage system that can integrate
with ETC.

The Web currently coexists with blockchain systems. Websites access these
systems to provide additional functionality. As ETC and related systems mature,
browsers will increasingly just point to these Web alternatives thus ushering in
the era of Web 3.0.

World Database (Blockchain)

The world database stores requests sent to the world computer. These requests
are referred to as transactions. The transactions are collected into sets
referred to as blocks. The blocks form a tree and a single path through that
tree defines the blockchain. The blockchain stores other information in
addition to transactions such as transaction logs. Lastly, process of
creating, verifying and adding new blocks to the blockchain is referred to as
mining.

The blockchain distributed database architecture was first introduced to the
world in the Bitcoin system.

	Transactions

	Blocks
	Computation

	Consensus

	Context

	Accounts

	Logs
	Logging Requests
	Indexed Values

	Mining
	Proof Of Work Information

	Ethash

	Uncle Blocks

	Mining Pools

	Mining Rewards

Transactions

Transactions are requests sent to the ETC network from user accounts.
Transactions can send funds, create new smart contracts, or, execute existing
smart contracts. Transaction resource requirements are measured in gas
units. Gas is purchased with classic ether. All transactions contain the
following six elements:

	to (receiving address)

	Transactions contain receiving account addresses. This component is an empty
string for smart contract creation transactions for which new accounts,
with new addresses, will be created.

	init or data (constructor or calling arguments)

	For smart contract creation transactions, this contains the
associated constructors. For smart contract execution transactions, this
contains the data operated on.

	value (transfer amount)

	amount of classic ether, in units of wei, to be transferred to the receiving
account

	gas price

	offer of classic ether willing to pay per gas unit

	gas limit (maximum gas purchase)

	maximum number of gas units willing to purchase

	nonce

	originating user account nonces

	v, r, s (digital signature)

	three numbers comprising the digital signature of the transaction with
respect to the private key of the originating account

If applying transactions requires more gas to complete than the maximum gas
amount allowed, then all the effects are reversed except that the user is still
charged for the gas utilized.

Blocks

The ETC blockchain is composed of an array of blocks. Blocks contain three
categories of information: computation, consensus and context. Blocks
contain transaction related information (computation), mining related
information (consensus), and, information to properly locate blocks
on the blockchain (context). All components except for two lists form the block
headers.

Computation

Transactions initiate all activity on the world computer. This category
contains information related to this computation. Specifically, these
block components consist of the following:

	transaction list

	lists of transactions

	transactions root (transaction list root hash)

	root hashes of transaction lists

	gas used (transaction list total gas requirement)

	gas requirements for all the transactions in the transaction list

	state root (transaction list final state root hash)

	root hashes of the states after each transaction
is applied

	receipts root (transaction log list root hash)

	root hashes of transaction log lists

	logs Bloom (transaction log list Bloom filter)

	Bloom filters of transaction log lists

It may seem problematic that blocks only contain root hashes of states and
transaction logs. Nevertheless, the full specification of any state or
transaction log can always be obtained by reapplying all the transactions on the
blockchain with respect to the initial state.

Consensus

Mining is the process of creating and validating new blocks. This is referred to
as mining because the participants (miners) are rewarded with newly created
ETC. The mining procedure is referred to as the consensus algorithm as it helps
users of ETC agree on an ordered set of transactions. This involves a race to
find certain numbers necessary to create new blocks. These numbers are referred
to as proof of work information because they are “proof” that a certain amount
of computational work was done. The block candidates that lose this race are
referred to as the uncle blocks since they are related to the parents or last
blocks added. These block components consist of the following:

	extra data (miner extra data)

	32 unused bytes added by miners

	beneficiary (miner address)

	addresses with respect to block mining rewards

	mix hash (miner validation help)

	values that help miners validate blocks faster

	gas limit (miner gas maximum)

	maximum possible gas requirements to apply all transactions in blocks

	nonce (proof of work information)

	the number required to add blocks to the blockchain

	difficulty (proof of work difficulty)

	difficulty of finding proof of work information for the block

	ommer header list (uncle header list)

	lists of the headers of the associated uncles

	ommers hash (uncle header list root hash)

	Keccak 256 hashes of uncle header lists

The miner validation help components are necessary because slow block validation
risks certain denial of service attacks. Miners are able to make slight
adjustments to the miner gas maxima of the next blocks they create if desired.
Uncles improve security by making attacks require performing more work. The
consensus algorithm automatically increases the proof of work difficulty for the
next blocks when new blocks are being added too quickly. Likewise, the proof of
work difficulty decreases when new blocks are being added too slowly.

Context

Blocks must always located correctly in the blockchain. Here are the blockchain
components pertaining to context.

	number (block number)

	the numbers of blocks that must precede blocks on the blockchain

	parent hash (parent header hash)

	Keccak 256 hash of parent block headers

	timestamp (date & time)

	dates and times that blocks were added to the blockchain

The parent block of a block is the preceding block on the blockchain. Dates and
times are denoted by the number of seconds since 1970–01–01 00:00:00 UTC.

Accounts

There is no explicit account information in the blockchain. The only account
information is the state root hash. To obtain account information, all the
transactions in all the blocks of the blockchain must be implemented on the
world computer with respect to the initial state.

Logs

For every transaction, the following information is logged:

	final state root hash

	cumulative gas usage

For example, the final state root hash logged with regards to the third
transaction of block 5,889,421 is:

0x915dd6ca7dca0c1d68c3cc84e0d8551394f353042af35bd6b5cf21084d643a27

That is the state root hash after the first three transactions have been
applied. Since all transactions for that block require 21,000 gas, the
cumulative gas usage logged with regards to the third transaction is 63,000
gas. Smart contracts can request the logging of additional information.

Logging Requests

Smart contracts can request the logging of additional information. Specifically,
smart contracts can request the logging of named lists of values. For example,
suppose a smart contract based game wanted to record the following information
for a player:

	account address

	health points

	gold coins

This information could be placed in a list named Player as in the following
Solidity code declaration:

event Player(address user, uint256 health, uint256 gold);

Here is Solidity code to write specific player data to the blockchain:

emit Player(0xdf0b7310588741cad931de88bc6c4f687cdf0e16, 234, 198);

Note that variable values are stored but not variable names. Note also that user
interfaces can access this logged information but that smart contracts cannot.

Logging requests are identified on the blockchain by hashes formed from their
list names and list value types. For example, the aforementioned Player
logging request is found on the blockchain by searching for the Keccak 256 hash
of the string “Player(address,uint256,uint256)”.

Bloom filters are always included with all smart
contract logging requests. Bloom filters are hashes created from data to speed
up searches with minimal storage requirements.

Indexed Values

Another way to speed up logging request searches is to store logging request
values in a special way. Specifically, they can be stored as if they were
additional logging request identifiers. This avoids having to extract them from
the bytes encoding all the logging request values. Values stored in this manner
are referred to as indexed values. For example, the Ethereum Token Standard
specifies logging requests with indexed values as in this Solidity code:

event Transfer(address indexed sender, address indexed receiver, uint256 amount);

The log for transaction

0x104068d21afd428ce8eb5d9da155e11ba53414e40e088c884a678c6c203083d7

contains three logging request identifiers:

0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef

0x000000000000000000000000efb32e82cf9d65a828d6d99e12f0beab01a467a6

0x000000000000000000000000e71ac6142eaffc85ee3b9049facbcb13bc11402a

The first value is the Keccak 256 hash of the string
“Transfer(address,address,unit256)”. The other values are the sending and
receiving addresses with regards to the corresponding token transfer.

Mining

Mining is the process of creating, validating, adding and distributing blocks.
Computers, and their administrators, that perform this service are referred to
as miners. Anyone computer on the network can become a miner. People are
incentivised to become miners because of the financial rewards. Mining
amazingly allows the Ethereum Classis system to be managed and secured in a
trustless decentralized manner.

Proof Of Work Information

Valid blocks must contain certain numbers referred to as proof of work
information. These numbers are also referred to as nonces. Miners compete to
be the first to find this proof of work information and thereby add new blocks
to the blockchain. Finding proof of work information is intentionally made
difficult. This difficulty is a main reason for the security of the blockchain.

The difficult process of finding adequate nonces involves the following. Nonces
must be found such that certain hashes of the blocks, with the nonces added,
have numerical values below specified maxima. The only way to find such hashes
is to simply try as many nonce guesses as possible until adequate hashes are
found. The maxima are automatically adjusted to keep the average block addition
time around 15 seconds. Ethash is the hashing algorithm in this process.

Ethash

The Ethash hashing algorithm requires the determination of a certain extremely
large directed acyclic graph that depends on block numbers. Quickly calculating
several Ethash hashes requires storing the entire directed acyclic graph in
memory. These large memory requirements thwart attempts to dominate the mining
process by building application specific integrated circuits (ASICs).

Uncle Blocks

In the contest to add blocks to the blockchain, the losing blocks can be
leveraged to increase the security of the blockchain. These losing blocks, to
be used this way, must have parent blocks that are at most six blocks from the
growing end of the blockchain. Miners gain additional financial rewards when
they mention the hashes of the headers of these losing blocks in blocks that are
accepted. This uncle block system is referred to as the GHOST protocol.

Here is why uncle blocks increase the security of the blockchain. The mining
contest will inevitably create multiple chains of blocks. The convention is
that the official chain is the one that is the most difficult to
reproduce. Adding uncle blocks increases the difficulty of reproducing the
official chain.

Uncle blocks are especially useful when blocks are not propagating quickly
throughout the network. This leads to many losing blocks as miners keep adding
blocks to outdated versions of the official chain. As block creation times
thereby increase, the security of the network decreases. This is fortunately
mitigated with uncle blocks.

Mining Pools

Because of the nature of the mining contest, the average expected mining rewards
are proportional to the amount of computational resources dedicated to mining.
There can still be variability in payout frequencies due to the random nature of
the mining process. In order to deal with this variability, miners often join
groups referred to as mining pools.

Some mining pools may lead to large amounts of mining resources in the control
of a few individuals. Fortunately, there are trustless decentralized mining
pools that avoid this risk.

Mining Rewards

Mining rewards consists of three parts:

	Base Rewards

	This part depends on the block numbers. It is paid with newly created
funds. Every five million blocks (about 2.4 years) this part decreases by
20%. Initially it was 5 ETC. It changed to 4 ETC after block number five
million and will continue to change in the future.

Define the block era E as a function of the block number N as follows (//
denotes integer division):

E = (N - 1) // 5000000

Then the base reward is as follows:

5 ⋅ 0.8:superscript:`E`

	Uncle Rewards

	This part depends on the number of uncle blocks included as well as the block
numbers. It is also paid with newly created funds. Each block can include at
most two uncle blocks. The reward for each uncle block is an additional
3.125% of the base reward.

For the block era E and number of uncles U, the total uncle reward is as
follows:

0.03125 ⋅ U ⋅ (5 ⋅ 0.8:superscript:`E`)

After block number five million, miners that create the uncle blocks began
getting this same reward per uncle block.

	Gas Rewards

	This part depends on the transactions included. It is paid from the
originating accounts. Miners execute the transactions and receive payments
for the gas required. Each transactions specifies a price paid per unit gas.

For gas requirements G₁, G₂, G₃, … and corresponding gas prices P₁, P₂, P₃,
…, the total gas reward is as follows:

G₁ ⋅ P₁ + G₂ ⋅ P₂ + G₃ ⋅ P₃ + …

Therefore, the total reward for creating a block is the following:

(1 + 0.03125 ⋅ U) ⋅ (5 ⋅ 0.8:superscript:`E`) + G₁ ⋅ P₁ + G₂ ⋅ P₂ + G₃ ⋅ P₃ + …

Here is a Python script that uses this mining reward formula to calculate
mining rewards:

#!/usr/bin/env python3

BASE_INITIAL = 5
BASE_PERCENT = 0.8
UNCLE_PERCENT = 0.03125
N_ERA_BLOCKS = 5e6

def mining_reward(block_number, num_uncles, gas_reqs, gas_prices):
 """
 Calculates mining rewards from block information. The gas
 information must be provided in lists or tuples. The gas
 prices must be in ETC.
 """

 era = (block_number - 1) // N_ERA_BLOCKS
 base_reward = (BASE_PERCENT ** era) * BASE_INITIAL
 uncle_reward = UNCLE_PERCENT * base_reward
 uncle_rewards = num_uncles * uncle_reward
 gas_rewards = 0
 for (gas_req, gas_price) in zip(gas_reqs, gas_prices):
 gas_rewards += gas_req * gas_price

 return base_reward + uncle_rewards + gas_rewards

Here are some example calculations on real ETC blockchain data:

>>> mining_reward(5425392, 0, [], [])
4.0
>>> mining_reward(5423326, 1, [], [])
4.125
>>> mining_reward(5424471, 0, [36163, 36163] , [2e-8, 2e-8])
4.00144652
>>> mining_reward(5421363, 1, [21000, 21000, 21000, 21000, 21000], [5.5e-8, 2e-8, 2e-8, 1.6e-8, 1e-8])
4.127541

The mining reward formula bounds the supply of ETC. Notice only the base and
uncle rewards increase the supply since the gas rewards just transfer existing
funds. Because the uncle rewards vary, the eventual total supply of ETC can only
be approximated.

The formula for the future increase in supply per era, assuming a constant
number of uncle blocks, is the following:

5000000 ⋅ (1 + 2 ⋅ 0.03125 ⋅ U) ⋅ (5 ⋅ 0.8:superscript:`E`)

The factor of 2 is necessary to include the uncle block creator rewards. The
total supply can be estimated from this formula by adding the contributions for
the remaining eras. Era 192, which will occur around the year 2474, is the last
era which increases the supply.

Assuming no more uncle blocks gives a lower bound of about 198.3 million
ETC. Assuming the maximum number of uncle blocks gives an upper bound of about
210.6 million ETC.

Appendices

blank

	Recursive Length Prefix

	Root Hashes

	Bloom Filters

	Digital Signatures

	How Nodes Find Each Other

	Code Is Law Principle

	A Crypto-Decentralist Manifesto By Bit Novosti

	The Ethereum Classic Declaration Of Independence

	Glossary

Recursive Length Prefix

Serialization is the process of encoding data structures into byte sequences. It
is also referred to as marshalling and pickling. Serialization is necessary when
storing and sending data structures.

RLP is a serialization format created by Ethereum developers for storage and
communications. It is used for all data structures such as accounts,
transactions and blocks. RLP is simpler than the alternatives such as Extensible
Markup Language (XML), JavaScript Object Notation (JSON), Binary JSON (BSON),
Protocol Buffers and Bencode.

RLP is also consistent. The same inputs are always converted to the same byte
sequences. This is not true of all serialization formats. For example, when
encoding sets of key value pairs, some schemes do not specify an ordering.

RLP operates on byte sequences and lists. Lists can contain byte sequences and
other lists. The interpretation of all inputs is handled by other protocols. For
byte sequences, small headers are added which depend on the length. For lists,
the elements are encoded separately and concatenated. As with byte sequences,
small headers are added which depend on the length. Lastly, all lengths are
encoded in big endian format.

Here are Python functions which implement RLP encoding and decoding:

#!/usr/bin/env python3

import math

N_BITS_PER_BYTE = 8

def n_bytes(integer):
 """
 Finds the numbers of bytes needed to represent integers.
 """

 return math.ceil(integer.bit_length() / N_BITS_PER_BYTE)

def get_len(input, extra):
 """
 Finds the lengths of the longest inputs using the given extra values.
 """

 n_bytes = input[0] - extra

 return 1 + n_bytes + int.from_bytes(input[2:2 + n_bytes], "big")

def rlp_encode(input):
 """
 Recursive Length Prefix encodes inputs.
 """

 if isinstance(input, bytes):
 body = input
 if (len(body) == 1) and (body[0] < 128):
 header = bytes([])
 elif len(body) < 56:
 header = bytes([len(body) + 128])
 else:
 len_ = len(body)
 len_ = len_.to_bytes(n_bytes(len_), "big")
 header = bytes([len(len_) + 183]) + len_
 result = header + body
 else:
 body = bytes([])
 for e in input:
 body += rlp_encode(e)
 if len(body) < 56:
 header = bytes([len(body) + 192])
 else:
 len_ = len(body)
 len_ = len_.to_bytes(n_bytes(len_), "big")
 header = bytes([len(len_) + 247]) + len_
 result = header + body

 return result

def rlp_decode(input):
 """
 Recursive Length Prefix decodes inputs.
 """

 if input[0] < 128:
 result = input
 elif input[0] < 184:
 result = input[1:]
 elif input[0] < 192:
 result = input[1 + (input[0] - 183):]
 else:
 result = []
 if input[0] < 248:
 input = input[1:]
 else:
 input = input[1 + (input[0] - 247):]
 while input:
 if input[0] < 128:
 len_ = 1
 elif input[0] < 184:
 len_ = 1 + (input[0] - 128)
 elif input[0] < 192:
 len_ = get_len(input, 183)
 elif input[0] < 248:
 len_ = 1 + (input[0] - 192)
 else:
 len_ = get_len(input, 247)
 result.append(rlp_decode(input[:len_]))
 input = input[len_:]

 return result

Notice that the functions are recursive. Notice also that the functions work for
inputs requiring up to about 18 million terabytes. Here are examples of their
usage:

>>> rlp_encode(b"A")
b'A'

>>> rlp_encode(b"12345")
b'\x8512345'

>>> rlp_encode(20 * b"12345")
b'\xb8d12345123451234512345123451234512345123451234512345123451234512345123451234512345123
 45123451234512345'

>>> rlp_encode([b"12345"])
b'\xc6\x8512345'

>>> rlp_encode([b"abcde", 3 * [b"12345"], [b"fghij"], b"67890", 4 * [b"klmno"]])
b'\xf8\x85abcde\xd2\x8512345\x8512345\x8512345\xc6\x85fghij\x8567890\xd8\x85klmno\x85klmno
 \x85klmno\x85klmno'

>>> rlp_decode(b"\x8512345")
b'12345'

>>> rlp_decode(b"\xc6\x8512345")
[b'12345']

>>> rlp_decode(b"\xf8\x85abcde\xd2\x8512345\x8512345\x8512345\xc6\x85fghij\x8567890\xd8\x85klmno\x85klmno\x85klmno\x85klmno")
[b'abcde', [b'12345', b'12345', b'12345'], [b'fghij'], b'67890', [b'klmno', b'klmno', b'klmno', b'klmno']]

RLP is an elegant and approachable serialization format used extensively by
ETC. It can be quickly mastered thereby illuminating this important aspect of
the system.

Root Hashes

The Ethereum Classic (ETC) blockchain contains “root hashes” that help maintain
the integrity of various components of the ETC system. I will describe these
root hashes including how to calculate them.

Some important ETC data structures are sets of key value pairs that are stored
as Merkle Patricia tries. Tries are trees of nodes. The top nodes correspond to
the “roots” of the trees. Therefore, hashes associated with the top nodes of
Merkle Patricia tries are referred to as root hashes. Specifically, root hashes
are the Keccak 256 hashes of the Recursive Length Prefix (RLP) encodings of the
top nodes.

ETC block headers contain root hashes for states, transaction lists and receipt
lists. ETC block headers also implicitly specify storage root hashes in the
state root hashes.

Here is Python code that implements RLP encoding and decoding:

import math

BYTE_LEN = 8

def n_bytes(integer):
 """
 Finds the numbers of bytes needed to represent integers.
 """

 return math.ceil(integer.bit_length() / BYTE_LEN)

def get_len(input, extra):
 """
 Finds the lengths of the longest inputs using the given extra values.
 """

 n_bytes = input[0] - extra

 return 1 + n_bytes + int.from_bytes(input[2:2 + n_bytes], "big")

def encode(input):
 """
 Recursive Length Prefix encodes inputs.
 """

 if isinstance(input, bytes):
 body = input
 if (len(body) == 1) and (body[0] < 128):
 header = bytes([])
 elif len(body) < 56:
 header = bytes([len(body) + 128])
 else:
 len_ = len(body)
 len_ = len_.to_bytes(n_bytes(len_), "big")
 header = bytes([len(len_) + 183]) + len_
 result = header + body
 else:
 body = bytes([])
 for e in input:
 body += encode(e)
 if len(body) < 56:
 header = bytes([len(body) + 192])
 else:
 len_ = len(body)
 len_ = len_.to_bytes(n_bytes(len_), "big")
 header = bytes([len(len_) + 247]) + len_
 result = header + body

 return result

def decode(input):
 """
 Recursive Length Prefix decodes inputs.
 """

 if input[0] < 128:
 result = input
 elif input[0] < 184:
 result = input[1:]
 elif input[0] < 192:
 result = input[1 + (input[0] - 183):]
 else:
 result = []
 if input[0] < 248:
 input = input[1:]
 else:
 input = input[1 + (input[0] - 247):]
 while input:
 if input[0] < 128:
 len_ = 1
 elif input[0] < 184:
 len_ = 1 + (input[0] - 128)
 elif input[0] < 192:
 len_ = get_len(input, 183)
 elif input[0] < 248:
 len_ = 1 + (input[0] - 192)
 else:
 len_ = get_len(input, 247)
 result.append(decode(input[:len_]))
 input = input[len_:]

 return result

Here is Python code that calculates root hashes using the PySHA3 package. It
requires the RLP code above to be saved to an accessible location with the file
name rlp.py. Invoke the root_hash function on Python dictionaries representing
sets of ETC key value pairs. All keys and key values must be Python byte
strings:

import sha3
import rlp

HASH_LEN = 32
HEXADEC = 16

def remove(dict_, segment):
 """
 Removes initial key segments from the keys of dictionaries.
 """

 return {k[len(segment):] : v for k, v in dict_.items()}

def select(dict_, segment):
 """
 Selects dictionary elements with given initial key segments.
 """

 return {k : v for k, v in dict_.items() if k.startswith(segment)}

def find(dict_):
 """
 Finds common initial segments in the keys of dictionaries.
 """

 segment = ""
 for i in range(min([len(e) for e in dict_.keys()])):
 if len({e[i] for e in dict_.keys()}) > 1:
 break
 segment += list(dict_.keys())[0][i]

 return segment

def patricia_r(dict_):
 """
 Creates Patricia tries that begin with regular nodes.
 """

 pt = (HEXADEC + 1) * [None]
 if "" in dict_:
 pt[-1] = dict_[""]
 del(dict_[""])
 for e in {e[0] for e in dict_.keys()}:
 pt[int(e, HEXADEC)] = patricia(remove(select(dict_, e), e))

 return pt

def patricia_s(dict_):
 """
 Creates Patricia tries composed of one key ending special node.
 """

 pt = list(dict_.items())[0]
 if len(pt[0]) % 2 == 0:
 pt = (bytes.fromhex("20" + pt[0]), pt[1])
 else:
 pt = (bytes.fromhex("3" + pt[0]), pt[1])

 return pt

def patricia(dict_):
 """
 Creates Patricia tries from dictionaries.
 """

 segment = find(dict_)
 if len(dict_) == 1:
 pt = patricia_s(dict_)
 elif segment:
 dict_ = remove(dict_, segment)
 if len(segment) % 2 == 0:
 pt = [bytes.fromhex("00" + segment), patricia_r(dict_)]
 else:
 pt = [bytes.fromhex("1" + segment), patricia_r(dict_)]
 else:
 pt = patricia_r(dict_)

 return pt

def merkle(element):
 """
 Encodes Patricia trie elements using Keccak 256 hashes and RLP.
 """

 if not element:
 merkle_ = b""
 elif isinstance(element, str):
 merkle_ = bytes.fromhex(element)
 elif isinstance(element, bytes):
 merkle_ = element
 else:
 merkle_ = [merkle(e) for e in element]
 rlp_ = rlp.encode(merkle_)
 if len(rlp_) >= HASH_LEN:
 merkle_ = sha3.keccak_256(rlp_).digest()

 return merkle_

def merkle_patricia(dict_):
 """
 Creates Merkle Patricia tries from dictionaries.
 """

 return [merkle(e) for e in patricia(dict_)]

def root_hash(dict_):
 """
 Calculates root hashes of Merkle Patricia tries from dictionaries.
 """

 dict_ = {k.hex() : v for k, v in dict_.items()}

 return sha3.keccak_256(rlp.encode(merkle_patricia(dict_))).hexdigest()

Here are sample calculations for all of the root hash types found in the ETC
blockchain. They require the root hash code above to be saved to an accessible
location with the file name root_hash.py. The RLP code above must be saved to an
accessible location with the file name rlp.py. Lastly, the following code to
convert integers to Python byte strings must be saved to an accessible location
with the file name int_to_bytes.py:

def int_to_bytes(number):
 if number:
 hex_ = hex(number)[2:]
 if len(hex_) % 2 != 0:
 hex_ = "0" + hex_
 result = bytes.fromhex(hex_)
 else:
 result = b""

 return result

For state root hash calculations, the keys of the Python dictionaries must be
the Keccak 256 hashes of the account addresses. The key values must be the RLP
encodings of lists containing the corresponding account nonces, balances,
storage root hashes, and, smart contract hashes. One way to obtain state
information is with an ETC Geth node. For example, the following ETC Geth node
command prints the state information for block 1,000,000:

geth dump 1000000

Here is the beginning of the voluminous output:

{
 "root": "0e066f3c2297a5cb300593052617d1bca5946f0caa0635fdb1b85ac7e5236f34",
 "accounts": {
 "843fd22c88d59e57ae1856a871a5d95e95b0a656": {
 "balance": "52500000000000",
 "nonce": 1,
 "root": "56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
 "codeHash":
 "c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470"
 ,
 "code": "",
 "storage": {}
 },
 "dcd0b6fa4f0a26a7b12325b0d09b5b809c5aef84": {
 "balance": "9375377890126000",
 "nonce": 1,
 "root": "56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
 "codeHash":
 "c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470"
 ,
 "code": "",
 "storage": {}
 },
 "7d62878a7235e95d56f802f80835543cac711f90": {
 "balance": "204544100000000000",
 "nonce": 0,
 "root": "56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
 "codeHash":
 "c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470"
 ,
 "code": "",
 "storage": {}
 },
 "67db390312dc02a140c358add4f37966c7775096": {
 "balance": "0",
 "nonce": 2,
 "root": "56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
 "codeHash":
 "c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470"
 ,
 "code": "",
 "storage": {}
 },

...etc.

The following code prints the state root hash for block 1,000,000 which is
0x0e066f3c2297a5cb300593052617d1bca5946f0caa0635fdb1b85ac7e5236f34. It requires
the aforementioned state information to be saved to an accessible location with
the file name state_1000000:

import root_hash
import sha3
import rlp
import int_to_bytes

dict_ = {}
state = eval(open("state_1000000", "r").read())
for address in state["accounts"]:
 account = state["accounts"][address]
 account = [int_to_bytes.int_to_bytes(int(account["nonce"])),
 int_to_bytes.int_to_bytes(int(account["balance"])),
 bytes.fromhex(account["root"]),
 bytes.fromhex(account["codeHash"])]
 key = sha3.keccak_256(bytes.fromhex(address)).digest()
 value = rlp.encode(account)
 dict_[key] = value

print(root_hash.root_hash(dict_))

For transaction list root hash calculations, the keys of the Python dictionaries
must be the RLP encodings of the transaction indices starting from zero. The key
values must be the RLP encodings of lists containing the corresponding
transaction nonces, gas prices, gas usage maxima, destination addresses, ether
sent, data sent and digital signature components. The following code prints the
transaction list root hash for the transactions in block 4,000,003 which is
0xad79d498b7e407d3a2b32c13a380ee93635da2b3e0696c39563cbd5c32d368b2:

import root_hash
import sha3
import rlp
import int_to_bytes

key_1 = rlp.encode(int_to_bytes.int_to_bytes(0))

nonce = int_to_bytes.int_to_bytes(1514565)
gas_price = int_to_bytes.int_to_bytes(20000000000)
gas_max = int_to_bytes.int_to_bytes(50000)
dest = 0x7b96a5006d5fc86d05f8799fe1fc6f7d23b24969
dest = int_to_bytes.int_to_bytes(dest)
ether = int_to_bytes.int_to_bytes(1001525814273650153)
data = b""
v = int_to_bytes.int_to_bytes(157)
r = 0x8815ebbcdb56717a30193db4629fa7565d2fb06c6fba2aaf0db06deaf932955d
r = int_to_bytes.int_to_bytes(r)
s = 0x4dbd4dcb648114859f57122d804b85c2dd60d0b502fb93d0ef770d50bfa3a59d
s = int_to_bytes.int_to_bytes(s)
trans = [nonce, gas_price, gas_max, dest, ether, data, v, r, s]
value_1 = rlp.encode(trans)

key_2 = rlp.encode(int_to_bytes.int_to_bytes(1))

nonce = int_to_bytes.int_to_bytes(43565)
gas_price = int_to_bytes.int_to_bytes(20000000000)
gas_max = int_to_bytes.int_to_bytes(21000)
dest = 0x7ccfb3028404225e4e9da860f85274e30ccc9275
dest = int_to_bytes.int_to_bytes(dest)
ether = int_to_bytes.int_to_bytes(109404508089999998976)
data = b""
v = int_to_bytes.int_to_bytes(28)
r = 0x8d6e2fcfe032d2612d2ea56da6d07b6a94004a4ec7cbe2c3f086db1a194aa679
r = int_to_bytes.int_to_bytes(r)
s = 0x6ed1333497c12b4549e55d117977bf60bb96872dfb05816fb7ce25c7396ef23a
s = int_to_bytes.int_to_bytes(s)
trans = [nonce, gas_price, gas_max, dest, ether, data, v, r, s]
value_2 = rlp.encode(trans)

print(root_hash.root_hash({key_1 : value_1, key_2 : value_2}))

For receipt list root hash calculations, the keys of the Python dictionaries
must be the RLP encodings of the receipt indices starting from zero. The key
values must be the RLP encodings of lists containing the corresponding receipt
state root hashes, cumulative gas amounts, log Bloom filters and logs. The
following code prints the receipt list root hash for the receipts in block
4,000,003 which is
0x4b3b43affc2927a152b9d6f18e378cf33671f8606e8549de292ae36b8a691584:

import root_hash
import sha3
import rlp
import int_to_bytes

key_1 = rlp.encode(int_to_bytes.int_to_bytes(0))

state = "abca6dd8fb332962c1c14c02d13b2082aee152496dc809d9642e2deca07fb7c2"
gas = 0x5208
bloom = 256 * "00"
logs = []
receipt = [bytes.fromhex(state),
 int_to_bytes.int_to_bytes(gas),
 bytes.fromhex(bloom),
 logs]
value_1 = rlp.encode(receipt)

key_2 = rlp.encode(int_to_bytes.int_to_bytes(1))

state = "029b0eb2c76ff08a1cf47aba4be53ff1c20b01026206eca248b47e0657f97524"
gas = 0xa410
bloom = 256 * "00"
logs = []
receipt = [bytes.fromhex(state),
 int_to_bytes.int_to_bytes(gas),
 bytes.fromhex(bloom),
 logs]
value_2 = rlp.encode(receipt)

print(root_hash.root_hash({key_1 : value_1, key_2 : value_2}))

For storage root hash calculations, the keys of the Python dictionaries must be
the Keccak 256 hashes of the storage indices for all nonzero storage values. The
key values must be the RLP encodings of the corresponding storage values. The
following code prints the storage root hash for the account with the address
0xd4eae4ae8565f3ecf218191fb267941d98a2c77a which is
0x9f630ea9c8cc6e9f7ecbc08cb7f9e901c14b788cc8f2ae64e3134cf3cb089f55. Note that
this result was correct as of block 5,874,861 but may possibly change
afterwards:

import root_hash
import sha3
import rlp
import int_to_bytes

KEY_LEN = 32
ZERO = b"\x00"

dict_ = {}
storage = [(0, 0x51f24771a5a2720456076e7c81d59753dac20e1f),
 (1, 0x4563918244f40000),
 (3, 0x55c64da8),
 (4, 0x6f05b59d3b20000),
 (5, 0x4fb5acbe16ffdda225cb14c64aa84c7e253b08ae)]
for e in storage:
 key = int_to_bytes.int_to_bytes(e[0])
 key = (KEY_LEN - len(key)) * ZERO + key
 key = sha3.keccak_256(key).digest()
 value = rlp.encode(int_to_bytes.int_to_bytes(e[1]))
 dict_[key] = value

print(root_hash.root_hash(dict_))

Root hashes are vital for the operation of the ETC world computer. The ETC
system utilizes state, transaction list, receipt list and storage root
hashes. These ETC root hashes can be found with a detailed recipe involving RLP
encodings, Keccak 256 hashes and Merkle Patricia tries.

Bloom Filters

Millions of people search the Internet, government databases, private databases
and blockchains everyday for medical advice, financial updates, weather reports,
maps and more. Likewise, millions of people want or need fast searches.

An effective method to speed up many searches is the use of indexes. Indexes,
like those at back of textbooks, provide the locations of all search terms. A
possible drawback is that they require large amounts of storage.

An effective method to speed up many searches, with less storage requirements,
is the use of Bloom filters. These are important in many areas such as mobile
and embedded devices.

Bloom filters are binary strings used to quickly determine set membership with
nominal storage requirements. Browsers use them to detect malicious
websites. Databases use them to avoid searching for nonexistent data.

Bloom filters require less memory than indexes, but, they sometimes give false
positives. In other words, they might claim an object is a member of a set when
it is not. It is noteworthy that Bloom filters never give false negatives. They
never claim an object is not in a set when it actually is. Browser Bloom filters
might incorrectly claim safe websites are malicious, but, they will never claim
malicious websites are safe. Fortunately, extra checks can always be performed
to eliminate any false positives.

To build a Bloom filter for the set {X₁, X₂, X₃, …, X:subscript:n}, with
hash function H, calculate H(X₁) | H(X₂) | H(X₃) | … | H(X:subscript:n). |
is the bitwise OR operator. H is only valid if the number of set bits (ones) in
all hashes is always less than or equal to some selected maximum.

Larger Bloom filters have less false positives. Bloom filters of several
megabytes are not uncommon. As hash functions typically do not have large enough
hashes, not to mention hashes with required number of set bits, adequate hashes
are often constructed from multiple hash functions. A common recipe is to have a
group of hash functions each set a single bit in the construction of a valid
hash. For example, to set a bit in a hash with 2²³ bits, the first 23 bits of
the Secure Hash Algorithm 1 (SHA1) hash can be used to select the position of a
bit to set.

To determine if an object X might be in a set with Bloom filter B, built with
hash function H, determine if H(X) & B = H(X). & is the bitwise AND
operator. Notice that the test only returns true if all the set bits in H(X) are
also set in B. Basically, groups of set bits in B correspond to elements. X
might be a member of the set if and only if its group of set bits corresponds to
a group in B. The reason B can only determine if X might be in the set is
because B contains the bits of several elements.

Bloom filters also allow light clients to
quickly and privately obtain account information without downloading the entire
blockchain.

Bloom filters are a powerful tool that allows additional innovation in
blockchain applications and many other areas in the twenty first century.

Digital Signatures

Ethereum Classic (ETC) digital signatures secure transactions. These involve
elliptic curve cryptography and the Elliptic Curve Digital Signature Algorithm
(ECDSA). I will describe ETC digital signatures without these topics using only
small Python functions.

Signing and verifying will be implemented using the following four constants and
three functions:

N = 115792089237316195423570985008687907852837564279074904382605163141518161494337
P = 115792089237316195423570985008687907853269984665640564039457584007908834671663
Gx = 55066263022277343669578718895168534326250603453777594175500187360389116729240
Gy = 32670510020758816978083085130507043184471273380659243275938904335757337482424

def invert(number, modulus):
 """
 Finds the inverses of natural numbers.
 """

 result = 1
 power = number
 for e in bin(modulus - 2)[2:][::-1]:
 if int(e):
 result = (result * power) % modulus
 power = (power ** 2) % modulus

 return result

def add(pair_1, pair_2):
 """
 Finds the sums of two pairs of natural numbers.
 """

 if pair_1 == [0, 0]:
 result = pair_2
 elif pair_2 == [0, 0]:
 result = pair_1
 else:
 if pair_1 == pair_2:
 temp = 3 * pair_1[0] ** 2
 temp = (temp * invert(2 * pair_1[1], P)) % P
 else:
 temp = pair_2[1] - pair_1[1]
 temp = (temp * invert(pair_2[0] - pair_1[0], P)) % P
 result = (temp ** 2 - pair_1[0] - pair_2[0]) % P
 result = [result, (temp * (pair_1[0] - result) - pair_1[1]) % P]

 return result

def multiply(number, pair):
 """
 Finds the products of natural numbers and pairs of natural numbers.
 """

 result = [0, 0]
 power = pair[:]
 for e in bin(number)[2:][::-1]:
 if int(e):
 result = add(result, power)
 power = add(power, power)

 return result

The invert function defines an operation on numbers in terms of other numbers
referred to as moduli. The add function defines an operation on pairs of
numbers. The multiply function defines an operation on a number and a pair of
numbers. Here are examples of their usage:

>>> invert(82856, 7164661)
3032150

>>> add([84672, 5768], [15684, 471346])
[98868508778765247164450388534339365517943901419260061027507991295919394382071, 110531019976596004792591549651085191890711482591841040377832420464376026143223]

>>> multiply(82716, [31616, 837454])
[82708077205483544970470074583740846828577431856187364454411787387343982212318, 30836796656275663256542662990890163662171092281704208118107591167423888588304]

Private keys are any nonzero numbers less than the constant N. Public keys are
the products of these private keys and the pair (Gx, Gy). For example:

>>> private_key = 296921718

>>> multiply(private_key, (Gx, Gy))
[29493341745186804828936410559976490896704930101972775917156948978213464516647, 14120583959514503052816414068611328686827638581568335296615875235402122319824]

Notice that public keys are pairs of numbers.

Signing transactions involves an operation on the Keccak 256 hashes of the
transactions and private keys. The following function implements this operation:

import random

def sign(hash, priv_key):
 """
 Signs the hashes of transactions.
 """

 result = [0, 0]
 while (0 in result) or (result[1] > N / 2):
 temp = random.randint(1, N - 1)
 result[0] = multiply(temp, (Gx, Gy))[0] % N
 result[1] = invert(temp, N) * (hash + priv_key * result[0])
 result[1] = result[1] % N

 return result

For example:

>>> hash = 0xf62d00f14db9521c03a39c20e94aa10a82ff5f5a614772b25e36757a95a71048

>>> private_key = 296921718

>>> sign(hash, private_key)
[12676003675279000995677412431399004760576311052126257887715931882164427686866, 17853929027942611176839390215748157599052991088042356790746129338653342477382]

>>> sign(hash, private_key)
[18783324464633387734826042295911802941026009108876130700727156896210203356179, 41959562951157235894396660120771158332032804144867595196194581439345450008533]

Notice that digital signatures are pairs of numbers. Notice also that the sign
function can give different results for the same inputs!

Verifying digital signatures involves confirming certain properties with regards
to the Keccak 256 hashes and public keys. The following function implements
these checks:

def verify(sig, hash, pub_key):
 """
 Verifies the signatures of the hashes of transactions.
 """

 temp_1 = multiply((invert(sig[1], N) * hash) % N, (Gx, Gy))
 temp_2 = multiply((invert(sig[1], N) * sig[0]) % N, pub_key)
 sum = add(temp_1, temp_2)
 test_1 = (0 < sig[0] < N) and (0 < sig[1] < N)
 test_2 = sum != [0, 0]
 test_3 = sig[0] == sum[0] % N

 return test_1 and test_2 and test_3

For example:

>>> hash = 0xf62d00f14db9521c03a39c20e94aa10a82ff5f5a614772b25e36757a95a71048

>>> private_key = 296921718

>>> public_key = multiply(private_key, (Gx, Gy))

>>> public_key
[29493341745186804828936410559976490896704930101972775917156948978213464516647, 14120583959514503052816414068611328686827638581568335296615875235402122319824]

>>> signature = sign(hash, private_key)

>>> signature
[54728868372105873293629977757277092827353030346967592768173610703187933361202, 18974025727476367931183775600389145833964496722266015570370178285290252701715]

>>> verify(signature, hash, public_key)
True

To verify that public keys correspond to specific ETC account addresses, confirm
that the rightmost 20 bytes of the public key Keccak 256 hashes equal those
addresses.

Strictly speaking, ETC digital signatures include additional small numbers
referred to as recovery identifiers. These allow public keys to be determined
solely from the signed transactions.

I have explained ETC digital signatures using code rather than
mathematics. Hopefully seeing how signing and verifying can be implemented with
these tiny functions has been useful.

How Nodes Find Each Other

Ethereum Classic (ETC) network nodes have accurate information about the network
in spite of it being decentralized and constantly changing. I will describe how
this happens.

Some network nodes are always available and accepting of new connections from
other network nodes. These are referred to as bootstrap nodes. New network nodes
first connect to bootstrap nodes to obtain information. Here is the current Geth
bootstrap node list with network nodes specified using “enode” strings:

enode://e809c4a2fec7daed400e5e28564e23693b23b2cc5a019b612505631bbe7b9ccf709c1796d2a3d29ef2b045f210caf51e3c4f5b6d3587d43ad5d6397526fa6179@174.112.32.157:30303
enode://6e538e7c1280f0a31ff08b382db5302480f775480b8e68f8febca0ceff81e4b19153c6f8bf60313b93bef2cc34d34e1df41317de0ce613a201d1660a788a03e2@52.206.67.235:30303
enode://5fbfb426fbb46f8b8c1bd3dd140f5b511da558cd37d60844b525909ab82e13a25ee722293c829e52cb65c2305b1637fa9a2ea4d6634a224d5f400bfe244ac0de@162.243.55.45:30303
enode://42d8f29d1db5f4b2947cd5c3d76c6d0d3697e6b9b3430c3d41e46b4bb77655433aeedc25d4b4ea9d8214b6a43008ba67199374a9b53633301bca0cd20c6928ab@104.155.176.151:30303
enode://814920f1ec9510aa9ea1c8f79d8b6e6a462045f09caa2ae4055b0f34f7416fca6facd3dd45f1cf1673c0209e0503f02776b8ff94020e98b6679a0dc561b4eba0@104.154.136.117:30303
enode://72e445f4e89c0f476d404bc40478b0df83a5b500d2d2e850e08eb1af0cd464ab86db6160d0fde64bd77d5f0d33507ae19035671b3c74fec126d6e28787669740@104.198.71.200:30303
enode://5cd218959f8263bc3721d7789070806b0adff1a0ed3f95ec886fb469f9362c7507e3b32b256550b9a7964a23a938e8d42d45a0c34b332bfebc54b29081e83b93@35.187.57.94:30303
enode://39abab9d2a41f53298c0c9dc6bbca57b0840c3ba9dccf42aa27316addc1b7e56ade32a0a9f7f52d6c5db4fe74d8824bcedfeaecf1a4e533cacb71cf8100a9442@144.76.238.49:30303
enode://f50e675a34f471af2438b921914b5f06499c7438f3146f6b8936f1faeb50b8a91d0d0c24fb05a66f05865cd58c24da3e664d0def806172ddd0d4c5bdbf37747e@144.76.238.49:30306
enode://6dd3ac8147fa82e46837ec8c3223d69ac24bcdbab04b036a3705c14f3a02e968f7f1adfcdb002aacec2db46e625c04bf8b5a1f85bb2d40a479b3cc9d45a444af@104.237.131.102:30303

All enode strings contain Elliptic Curve Digital Signature Algorithm (ECDSA)
public keys and internet sockets (addresses and ports).

Additional network nodes are found by network nodes storing and sharing lists of
network nodes that have recently communicated with them. Ignoring older activity
decreases the probability of sharing information about nonexistent network
nodes. Network nodes continually communicate and thereby continually share their
information. The whole process starts with bootstrap nodes and quickly includes
many other network nodes.

Here is the current list for my Parity ETC node:

enode://9fe33f0ebc5b0ce51879afa3f767b2a180536dafb34b5af24cef11bb1c136b90d7839d6340d912ccd1f8e917a9e24d0d908ca4811a15889fcbf70733d7411608@122.215.240.147:30303
enode://e1520f00ff23e82c87411964a70c08e77592aab16647ddc2b53a5617808330184aaaac786002d31e40a1db6ec1447d6b0d8ebc7d9099cc90d606b7936fd9b908@172.86.120.213:30303
enode://a68a96163c842f1175d8eb515ca60ab93e80ab581cded1a11527f53e89f1f1cfb624e3f0a79a5dd76ee0fad54758ec9515be38158b2cf01635dcf444db6716db@46.101.169.110:30303
enode://e5ddf2ea2373697136681eaba314039ce60b99656c4eefabb2d01032d77dae384919941589f1d9309c340a854310b556d059521414db93c3b0d5ed5ff1308dc4@13.125.218.87:30303
enode://f5d269ebbfb94494e7e2251a49f430df5d7f510cf04173dad1229b12e4929e6a65f4c76cf9cb0f789c30f7a9d2e50a453a64bb0f797429fe3f2e30cbd0198c0b@35.230.160.215:30303
enode://efce38b6ee1baa4fa0a48c4202cc175fe4668a376365bbd0b9735a06de04593c822e9064d6664e346af5c98efc0dd0e4f3f1b8b64364aba5f2c51b259accc41c@47.98.232.156:30303
enode://c38fadc7d03341aaa856c41d8af9733d535cbbde3e3e103dd97c1bf6a0e15f8a6ed77c7bfb04784d9be7bdef884172a1fca8367f3750d4e3d0e9a0e95db57e29@47.97.72.201:30303
enode://10a0e3e2e4d9be6eab3615cd441da32dcebc7d51df9639c92eae35a7a434cf2c8e2bec756573ca9f49f48d6ed65917d4fbd220658d21888ee75799de955f2580@13.125.156.101:30303
enode://c1e0e9f8607afc20b70dc6f2b19258e879841561360385c63d004a9cdb1a93f1122e061ad405ff98a03f3413a945c9299e19d6bd6bc86a17682e34f811f12d32@52.57.166.35:30303
enode://f4a1153780ccb0b4e2c86bdf11837035f621ddc09bcf7d874a9879bc20adf5a32ce0b5cda91674873ad4cd89ca0b6da6a89197102922ea58d3f98ec421368240@167.114.236.10:30303
enode://7c253d4172cb27a7c514c35ee1cad1ff0fa1a6d2d2ca1c3a6f67d7416173bf0f36c64d6caf5f3cf13700e81104b10642787c17bbfb00e67d1a85c5a88c613cd6@13.125.206.176:30303
enode://ed81e7f825a5309c3c93698a440055f10fa617342f6e8c62645b3ee813515c488addee22a3175223b4d0bc410c0b3f0a2bc25d67ee2d75cfa4f8bac6006a8f6a@109.236.81.109:30307
enode://8d45cb061b744f444d38c58f2fd972214f565e24539eb5ccd85612290a66d9da885a1012576784ab2a2cb93050a4ef99e6ba0931963fe7ed4370def400349dbf@149.202.174.161:30303
enode://1275a4224ee8ee7cedc5ab62a118428f6f4ec2841440cefacf8d01c368ac345d687052c667204e52cc22f0b85de0fc8195aceee5d2d28d2c69d3a3644aecb840@115.22.91.166:30303
enode://c60ae3bccd9ccded51ad5e8c2aa6bad8fad072c1809779566c85ca17f2f5d810fd6c11761e892c45787e9f27a213cc9ade3244f7a8f8e9fb071e8281b263740e@61.100.182.189:40404
enode://feaf167dad6e117bc07c507b8cf4aa1978cdcc592d218bde7782c67abc53dbf02ea8aa6799946aee4f8e5f73c58dbc28eadaa8739431bc0233f78562c5266c24@13.125.25.106:30305
enode://ba8efe932cbf32f0d8ee9a0af45ade59dd26e81cafdc86497e57aca0ae5e9bcc64ee058a4c844bc0d06ceea2db062f377705870b14c72db2977f110485d809cf@5.9.6.244:30303
enode://c989f4ceea49188426561d2a1833c157cfd137948ae054ab47e770f4032b7708ac59121e13d0c267c23779b96cae258d39e4c05ac55b6a7300fbaa79dd19b541@52.30.37.160:30305
enode://4329eb2c7e62206421469d413ddc6f8bdf10eb176aaec065282bd31d198ace82871034fa4af34ad0ed5051d2d9d82845a6729f254220fffd91175cddb20318cd@167.114.236.167:30303
enode://485f2c2368cfb6614026058e37c4d1a63aba7285df77663198c96824dc9b44b2d3861198d42d8c00f7f2d3ee7a00619ebb6e2f70ee96cfd0ca13d7a98a438b52@52.221.229.254:30303
enode://78f960f4cc378980409704957818e55bb671775d3ca3f731fb8a0468a1156b7158a42e921f4077eaf9de3e8a6905360fca629dfbdb089b083aa0e46a0554ce09@159.65.3.132:30303
enode://5eb58e0bda31307b19b6d25350bba7b812fc0337cb34e79a5796bbdcaf3bace0535d56e2f485cab7839d03754d5bacb98d666c8c2e9a2ca3c8fe5a9e2b0f63a1@47.91.28.47:30305
enode://ad132e9609f8288c07e8958af5b1c77dad6001af774e5a5b3d3e06bd339b8a52e63a70ba92df917ddaa1494ed228c735cc5be00f4d59cffe995eb574eb467827@120.131.14.202:30303
enode://f926fb79061578191b8d125d6fca889f711c94d1dab19f3c106671812a098bb7837b5b40c67f8f0ae2bd0a0410cfa57a00270af8ebe7e9162e3f7b034df554eb@13.78.23.204:30303
enode://a38b8841524f4a0f6e4161511ef9ed60b7da1a5303a316fd99d997c5f2642313eab3cbe560b1c62dab1ac9be8e92fe61611c41728c3628b59d2a23ae731ea717@165.227.151.104:30303

Amazingly, ETC nodes can find each other within a headless and ever changing
system. There are many such brilliant riches to appreciate in the ETC design
when one looks.

Code Is Law Principle

The code is law principle is the principle that no one has the right to censor
the execution of code on the ETC blockchain.

A Crypto-Decentralist Manifesto By Bit Novosti

Blockchains are going to rule the world, providing a mechanism for scaling
social and economic cooperation to an unprecedented level — a truly global
scale. Such cooperation will involve not only human beings, groups and
associations but also a growing multitude of increasingly independent
artificial agents.

Every blockchain creates a social network around its applications, with network
value growing exponentially with the number of participants in accordance with
Reed’s Law [https://en.wikipedia.org/wiki/Reed%27s_law]. This value isn’t
extracted by intermediaries or controllers, as with previous centralized
models. Instead, it’s shared among participants, providing economic incentives
for cooperation without coercion.

Not all blockchains are created equal. There are three key characteristics that
make scalable blockchain-enabled cooperation possible: openness, neutrality and
immutability.

Openness is necessary. It goes without saying that the rules of the game
should be open for anyone to see and understand. Anyone should be able to
participate in any layer of the system without asking for any permission
whatsoever. Anyone should be able to use the network in accordance with its
rules. Anyone should be able to create their own client implementing the open
protocol. Anyone should be able to contribute to network security, and so on. No
registration, identification or other preconditions should limit
participation. All such limitations prevent the network from scaling and their
enforcement creates centralization risks.

Neutrality is necessary. It’s important for anyone participating in
blockchain-enabled cooperation to be on an equal footing with everyone else. It
doesn’t matter if you wield huge economic power or only a tiny amount. It
doesn’t matter whether you’re a saintly Mother Theresa or a vicious drug
dealer. It doesn’t matter whether you’re a human or a refrigerator. It doesn’t
matter what you believe in, what political theory you subscribe to, or whether
you’re a moral or immoral person. A participant’s ethnicity, age, sex,
profession, social standing, friends or affiliations, make or model, goals,
purposes or intentions — none of this matters to the blockchain even a bit. The
rules of the game are exactly the same for everyone, period. Without neutrality,
the system is skewed towards one set of participants at the expense of
others. In that case, it’s less likely to gain universal acceptance and maximize
network value for everyone.

Immutability is necessary. The blockchain is a truth machine preserving one
universally accepted version of history, one immutable sequence of
events. What’s true once is always true, regardless of political or business
interests, and no amount of lobbying can change that. If it’s simply not
possible to change history, then no resources are wasted on the effort. If there
are any loopholes at all, then sufficiently motivated and determined interest
groups will exploit them at the expense of others, diminishing network value for
everyone.

The rules governing the blockchain network are known in advance. They’re exactly
the same for everyone and not subject to change other than with 100%
consensus. Yes, it must be 100%. Because any change to the system’s rules that
not all participants freely agree to creates a network split, diminishing
network value for everyone.

It’s impossible to achieve these blockchain characteristics without the system
being truly decentralized. If any aspect of the blockchain system becomes
subject to centralized control, this introduces an attack vector enabling the
violation of one or more of the key blockchain characteristics. It may be
possible to limit participation (such as by enforcing AML/KYC rules), thus
violating openness. It may be possible to enforce discriminatory policies (such
as by filtering “illegal” transactions), thus violating neutrality. It may be
possible to rewrite the history of events (such as by confiscating or
“redistributing” funds), thus violating immutability. Introducing centralized
chokepoints creates a precondition for the introduction of “blockchain
intermediaries or controllers” who can siphon value out of the system at other
participants’ expense.

So decentralization is the most important feature of blockchain systems, the one
everything else depends on. With decentralization, blockchains will come to rule
the world. Without it, they’ll be “contained” and railroaded into niche
applications.

We decentralists are committed to keeping blockchains open, neutral and
immutable. We’re committed to keeping blockchain systems decentralized. This
informs all our actions and positions towards any developments in the crypto
world and beyond. All attempts to violate any of the key blockchain
characteristics should be fought. All changes to a blockchain’s rules that
introduce new centralization risks or strengthen existing ones should be
fought. Only developments that are clearly beneficial to decentralization or
strengthen the three key blockchain characteristics should be supported and
encouraged.

The blockchain revolution won’t be centralized. Let’s make sure of it.

Onward.

The Ethereum Classic Declaration Of Independence

Let it be known to the entire world that on July 20th, 2016, at block 1,920,000,
we as a community of sovereign individuals stood united by a common vision to
continue the original Ethereum blockchain that is truly free from censorship,
fraud or third party interference. In realizing that the blockchain represents
absolute truth, we stand by it, supporting its immutability and its future. We
do not make this declaration lightly, nor without forethought to the
consequences of our actions.

Looking Back

It should be stated with great gratitude that we acknowledge the creation of the
Ethereum blockchain platform by the Ethereum Foundation and its founding
developers. It certainly can be said without objection, that without their hard
work and dedication that we as a community would not be where we are today.

From its inception, the Ethereum blockchain was presented as a decentralized
platform for “applications that run exactly as programmed without any chance of
fraud, censorship, or third-party interference” [1] [https://ethereum.org]
. It provided a place for the free association of ideas and applications from
across the globe without fear of discrimination while also providing
pseudonymity. In this decentralized platform, many of us saw great promise.

List of Grievances

It is however, with deep regret, that we as a community have had to
spontaneously organize [2] [https://www.reddit.com/r/EthereumClassic/comments/4u4o61/call_for_action_what_can_i_do_to_help_ethereum]
to defend the Ethereum blockchain platform from its founding members and
organization due to a long train of abuses, specifically by the leadership of
the Ethereum Foundation. These grievances are as follows.

	For rushing the creation of a “soft fork,” which was comprised of a minor
change in the Ethereum blockchain code for the sole purpose of creating a
blacklist and censoring transactions that normally would have been allowed.

	For neglecting the full implications of the “soft fork” by the Ethereum
blockchain as a warning that they were violating the principles and values
coded therein. [3] [https://blog.ethereum.org/2016/06/28/security-alert-dos-vulnerability-in-the-soft-fork]

	For creating an unrepresentative voting mechanism called the “carbon vote”,
which they initially stated was “unofficial” [4] [https://www.reddit.com/r/ethereum/comments/4s0rz6/a_vote_that_nobody_knows_about_is_not_a_vote/d55nye3]
only to contradict these statements a day before determining to hard fork. [5] [https://blog.ethereum.org/2016/07/15/to-fork-or-not-to-fork]

	For rushing the creation of a “hard fork,” which was comprised of an irregular
state change in the Ethereum blockchain code that violated the properties of
immutability, fungibility, and the sanctity of the ledger.

	For willfully deciding to not include replay protection in the “hard fork”, an
action which has unnecessarily cost exchanges and thousands of users the
rightful ownership of their Ether tokens. [6] [https://pbs.twimg.com/media/CopwJVHXEAABEKd.jpg]

Respecting the Values Essential for Blockchains

One might ask what harm can be done from changing the code of the Ethereum
blockchain and bailing out [7] [https://dictionary.cambridge.org/us/dictionary/english/bailout] “The DAO”
token holders, which is not an unreasonable question. Many of us have an innate
sense of right and wrong, so at first glance rescuing “The DAO” felt
right. However, it violated two key aspects of what gives peer-to-peer cash [8] [https://bitcoin.org/bitcoin.pdf] and smart contract-based systems value:
fungibility and immutability.

Immutability means the blockchain is inviolable. That only valid transactions
agreed upon via a cryptographic protocol determined by mathematics are accepted
by the network. Without this, the validity of all transactions could come into
question, since if the blockchain is mutable, any transaction could be
modified. Not only does this leave transactions open to fraud, but it might
spell disaster for any distributed application running atop the platform.

Fungibility is the feature of money where one unit equals another unit. For
instance, a Euro equals another Euro just as a Bitcoin equals another
Bitcoin. Unfortunately, an ETH no longer equals another ETH. The alleged
attacker’s ETH was no longer as good as your ETH and was worthy of censorship,
deemed necessary by a so-called majority.

Ultimately, these breaches in fungibility and immutability were made possible by
the subjective morality judgements of those who felt a burning desire to bring
the alleged attacker to justice. However, in doing so they compromised a core
pillar of Ethereum just to do what they felt was in the interests of the
“greater good”. In a global community where each individual has their own laws,
customs, and beliefs, who is to say what is right and wrong?

Deeply alarmed that these core tenets were disregarded by many of the
Foundation’s developers, and a sizable portion of Ethereum participants, we, as
a community, have organized and formed a code of principles to follow for the
Ethereum Classic chain.

The Ethereum Classic Code of Principles

We believe in a decentralized, censorship-resistant, permission-less
blockchain. We believe in the original vision of Ethereum as a world computer
that cannot be shut down, running irreversible smart contracts. We believe in a
strong separation of concerns, where system forks of the codebase are only
possible when fixing protocol level vulnerabilities, bugs, or providing
functionality upgrades. We believe in the original intent of building and
maintaining a censorship-resistant, trustless and immutable development
platform.

Herein are written the declared values by which participants within the Ethereum
Classic community agree. We encourage that these principles not be changed via
edict by any individual or faction claiming to wield power, authority or
credibility to do so.

We, as a community agree that:

	The purpose of Ethereum Classic is to provide a decentralized platform that
runs decentralized applications which execute exactly as programmed without
any possibility of downtime, censorship, fraud or third party interference.

	Code is law; there shall be no changes to the Ethereum Classic code that
violate the properties of immutability, fungibility, or sanctity of the
ledger; transactions or ledger history cannot for any reason be reversed or
modified.

	Forks and/or changes to the underlying protocol shall only be permitted for
updating or upgrading the technology on which Ethereum Classic operates.

	Internal project development can be funded by anyone, whether via a trusted
third party of their choice or directly, using the currency of their choice on
a per project basis and following a transparent, open and decentralized
crowdfunding protocol.

	Any individual or group of individuals may propose improvements, enhancements,
or upgrades to existing or proposed Ethereum Classic assets.

	Any individual or group of individuals may use the Ethereum Classic
decentralized platform to build decentralized applications, hold crowdsales,
create autonomous organisations/corporations, or for any other purpose they
deem suitable.

Looking Forward

For the many reasons listed above, we have chosen to rename the original
blockchain “Ethereum Classic” with the ticker symbol “ETC”, so that the
community and all other participants can identify the original, unforked, and
immutable blockchain platform.

Our most sincere gratitude goes to those developers within and outside the
Foundation who opposed interfering with the Ethereum blockchain ledger and
enabled the Ethereum Classic chain to survive and live on. We know there are
many of you and we welcome you at anytime to join our decentralized community.

We will continue the vision of decentralized governance for the Ethereum Classic
blockchain and maintain our opposition to any centralized leadership takeover,
especially by the Ethereum Foundation as well as the developers who have
repeatedly stated that they would no longer develop the Ethereum Classic chain.

We likewise will openly resist the “tyranny of the majority,” and will not allow
the values of the system to be compromised. As a united community, we will
continue to organize for the defense and advancement, as required, for the
continuation and assurance of this grand experiment. The Ethereum Classic
platform, its code and technology, are now open to the world as Open Source
software. [9] [https://github.com/ethereumproject] It is now freely available
for all who wish to improve and build upon it: a truly free and trustless world
computer that we together as a community have proven and will continue to prove
is anti-fragile. [10] [https://en.wikipedia.org/wiki/Antifragile]

	The Ethereum Classic Community

Glossary

	51% attack

	attacks against blockchain systems that are possible if attackers control over half of the mining resources

	account

	data structure associated with Ethereum Classic users and smart contracts

	address

	unique numbers that identify blockchain accounts and are derived from the associated private keys

	ASIC

	application specific integrated circuit, devices optimized for specific tasks such as blockchain mining

	block

	sets of blockchain transactions and related logistical information

	block explorer

	website presenting information about a blockchain

	block header

	all the fields of Ethereum Classic blocks except the transaction and uncle header lists

	block propagation

	distribution of copies of blocks throughout blockchain networks

	blockchain

	linear arrays of blocks each of which met the requirements of the blockchain system

	bootstrap nodes

	Ethereum Classic network computers that are always available and accepting of new connections from other network computers

	classic ether

	the native cryptocurrency of Ethereum Classic, also referred to as ether

	coinbase

	blockchain account that receives mining rewards

	compiler

	programs that translate programs from one programming language to others

	consensus

	agreements among blockchain miners regarding the selection of the official chain

	cryptocurrency

	money systems implemented on blockchain systems

	daemon

	autonomous software agents

	DAG

	directed acyclic graph, used in the Ethereum Classic proof of work calculations

	dapp

	applications that run on blockchain systems, also referred to as decentralized applications

	decentralization

	the elimination of centralized control entities from software and network designs

	decentralized application

	applications that run on blockchain systems, also referred to as dapps

	decentralized autonomous enterprise

	sophisticated smart contracts that perform many of the functions of organizations

	difficulty

	difficulty of a proof of work calculation in a blockchain system

	digital signature

	strings associated with other strings that prove the creators has access to a private key

	digital signature

	authentication mechanism in which text snippets appended to data establishing that the creator had access to the associated private key and did a calculation on the data with it,

	elliptic curve cryptography

	type of cryptography typically used in blockchain public and private key systems

	encryption

	a cryptographic process used to protect the privacy of information

	ether

	the native cryptocurrency of Ethereum Classic, also referred to as classic ether

	event

	requests in smart contracts to log some information

	EVM

	Ethereum Virtual Machine

	exchange

	place to buy and sell cryptocurrencies

	external account

	one of the two types of Ethereum Classic accounts, used by external clients

	fast syncing

	updating blockchain copies and downloading instead of calculating state information

	gas

	units used to measure resource usage in the Ethereum Classic system

	gas limit

	limits on the maximum possible of gas units, blocks for example have limit on the amount of gas all their transactions can require

	gas price

	prices of gas units in classic ether

	genesis block

	first blocks of blockchains

	GHOST

	Greedy Heaviest Observed Subtree blockchain protocol

	hash

	fixed length string calculated from another possibly much longer string with many uses such as confirming data integrity and naming objects

	hashrate

	total mining capacity of a blockchain as measured by how fast hashes can be calculated

	hexadecimal

	compact method of representing numbers involving numbers and letters, is especially used for big numbers

	IPC

	interprocess communication, used to communicate between processes on a computer

	keyfile

	file containing a private and public key pair, typically encrypted

	light client

	blockchain client that submit that can utilize a blockchain but does not maintain a complete copy of the blochchain

	Merkle Patricia trie

	data structures which represents key value pairs

	message

	smart contract account requests to other smart contract accounts, may transfer funds as well as invoke or create smart contracts

	mining

	process of creating, verifying and distributing blocks in a blockchain

	mining pool

	group of miners working together

	mining reward

	new cryptocurrency tokens given to miners for performing mining

	node

	computers in a network such as a blockchain network

	node discovery

	process of finding other nodes in a network such as blockchain network

	nonce

	numbers used once (Number ONCE) for various purposes in blockchain systems such as proof of work calculations and preventing replay attacks

	peer to peer network

	decentralized network without a centralized control entity

	private key

	secret numbers of blockchain accounts used to authorize transactions from it

	proof of work

	results of difficult calculations in some blockchain systems used to increase security

	protocol

	set of rules to accomplish something like a process in a blockchain system

	public key

	pairs of numbers derived from the private keys of blockchain accounts used to identify blockchain accounts and determine account addresses

	receipt

	transaction logs

	RPC

	remote procedure call, used to invoke code on the same or different computers

	serialization

	process of converting a data structure into a linear array of bits

	Serpent

	high level smart contract language which is similar to Python

	sharding

	mechanism to increase the scalability of blockchain systems by dividing blockchains into subsets (shards) managed by different parts of the network

	sidechain

	blockchain that is associated with but still separate from another blockchain

	smart contract

	autonomous software agents such as software running on blockchains

	Solidity

	high level smart contract language which is similar to Javascript

	state

	in Ethereum Classic, all account information for all accounts at some point in time

	syncing

	updating blockchain copies

	transaction

	external account requests to the Ethereum Classic system, may transfer funds as well as invoke or create smart contracts

	transaction fee

	gas costs to execute transactions

	trustless

	property of public blockchain system whereby no entity has special permissions

	uncle

	losing blocks in mining contests that are used to increase the security of blockchain systems

	virtual machine

	computing resource implemented in software

	Vyper

	high level smart contract language which is similar to Python

	wallet

	set of public and private keys, may also refer to other associated information and software

	web 3

	name that refers to the vision of a more secure, trustless blockchain based World Wide Web replacement

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Ethereum Classic Technical Reference (BETA)

 		
 Introduction

 		
 World Computer (Virtual Machine)

 		
 Accounts

 		
 Addresses

 		
 Ether & Gas

 		
 Smart Contracts

 		
 Smart Contract Languages

 		
 Multisig Smart Contracts

 		
 Clients

 		
 Web 3

 		
 World Database (Blockchain)

 		
 Transactions

 		
 Blocks

 		
 Computation

 		
 Consensus

 		
 Context

 		
 Accounts

 		
 Logs

 		
 Logging Requests

 		
 Mining

 		
 Proof Of Work Information

 		
 Ethash

 		
 Uncle Blocks

 		
 Mining Pools

 		
 Mining Rewards

 		
 Appendices

 		
 Recursive Length Prefix

 		
 Root Hashes

 		
 Bloom Filters

 		
 Digital Signatures

 		
 How Nodes Find Each Other

 		
 Code Is Law Principle

 		
 A Crypto-Decentralist Manifesto By Bit Novosti

 		
 The Ethereum Classic Declaration Of Independence

 		
 Glossary

_static/ajax-loader.gif

_images/etc_logo.png

